

Using regenerative management practices to support vineyard soil biodiversity and health

Cristina Lazcano, PhD. University of California Davis

Kerri Steenwerth, PhD. USDA ARS, Davis.

All life kingdoms are represented in soil

Credits: Jessica Chiartas

'Soil is likely home to 59 ± 15% of the species on Earth'

Anthony et al. (2023)

Soils are full of life

...right in the palm of your hand

Soil ecological interactions

Soil Health

Nutrient cycling

Carbon management

Disease regulation

Water regulation

Source: De Vries and Wallenstein (2017)

Soil biodiversity underpins soil health and agroecosystem sustainability

Management should be targeted to biodiversity

Source: 'Soil Biodiversity in California Agriculture: Framework and Indicators for Soil Health Assessment' CDFA, 2023

Vineyard soil biodiversity

The soil microbiome drives:

- Nutrient cycling
- Disease control
- Carbon sequestration
- Wine fermentation

Little information about other types of soil biodiversity

Image source: Liu et al 2019

Monitoring soil biodiversity: what should I look for?

Potential Methods Level Indicator Abundance Counts: Soil faunal counts, most probable number, direct counts Cells, organisms, CFUs (microscopy), colonization rates (mycorrhizae), phospholipid fatty (often with conversion acid analysis (PLFA), fatty acid methyl ester (FAME) analysis, total Cellular Constituents: factor) DNA, guantitative polymerase chain reaction (PCR) of taxonomic or Carbon, lipids, DNA, necromass, functional genes, plating and CFU (colony forming units) counts, metabolites turbidity, flow cytometry, ergosterol, Microbial biomass carbon/ nitrogen/etc (MBC/N) Genotype Identification: Identity Plating and colony identification, nematode anatomy or morphology, microscopy identification (fungi, bacteria), flow 16S/18S signature, ITS signature cytometry, PLFA/NLFA (neutral lipid fatty acid)/FAME, quantitative Phenotype Identification: PCR, FISH (fluorescence in situ hybridization) Morphology, biochemical signature (lipids), culture-based methods Functional Traits Genetic Analysis: Functional gene analysis, metagenomics, metaproteomics, Functional traits metatranscriptomics, metabolomics, nematode anatomy or morphology Phenotype Analysis: Morphology, proteome Interactions Co-occurrence patterns, food web Network analysis of organism (taxonomic, functional group), relationships co-occurrence patterns, food web modeling, process modeling, (including biochemical indicators (guorum sensing signals, antibiotics, measurements and signaling molecules) derived data) Biogeochemical transformations, Enzyme assays, Potentially mineralizable nitrogen (PMN), Potentially Processes metabolites, growth rates mineralizable carbon (PMC), Respiration, Substrate induced respiration (SIR), Bioassays, qCO₂ (the microbial metabolic quotient, or respiration-to-biomass ratio), Biolog - Microbial Identification &

Characterization, isotope analysis

Source: 'Soil Biodiversity in California Agriculture: Framework and Indicators for Soil Health Assessment' CDFA, 2023

Who is there?

What are they doing?

Selection of indicators depends on the goal

Source: 'Soil Biodiversity in California Agriculture: Framework and Indicators for Soil Health Assessment' CDFA, 2023

Least useful					Most Useful
[EXAMPLE CASE STUDY #3B] Assist Growers to Manage the Functions of Healthy Soils Using Information on Soil Biodiversity and Processes					
Indicator and Method	Meaningful and Targeted	Relevant to the Scale and Biology of the Organisms	Standard or Commonly Used Method	Costs, Accessibility, and Interpretability	Suggested Indicator with Comments
Bioindicator Categ	ory: ABUNDANCE				
Microbial Biornass: Phospholipid Fatty Acid Analysis (PLFA)	Quantitative biomass estimate with some information on identity Requires uncertain conversion factor.	Currently not optimal for nernatodes Only relevant for microorganisms	ISO/TS 29843- 2:2021(en) Soil quality — Determination of soil microbial diversity — Part 2: Method by phospholipid fatty acid analysis (PLFA) using the simple PLFA extraction method	Limited # of labs Does not require significant amounts of data processing Samples need to be analyzed quickly after collection	PARTLY RECOMMENDED: PLFA does provide abundance information for broad groups, including those suppressive to disease causing organisms. It does not allow for positive identification of pests and disease causing organisms or nematodes.
Nematode Biornass: Nematode Counts	Abundance of plant parasitic nematodes of concern	Yes, plant parasitic nematodes are good indicators for disease and pest potential	Soil quality — Sampling of soil invertebrates — Part 4: Sampling, extraction and identification of soil-inhabiting nematodes	Several Labs do this at reasonable cost, including CDFA diagnostic labs and commercial labs	RECOMMENDED: Nematode counts are the most commonly utilized current method to provide estimates of problem populations
Microbial Biomass: DNA (total)	Quantitative biomass estimate - information on identity only with further tests Requires uncertain conversion factor.	Depending on amount of soil extracted, is not ideal for measuring abundance of macrofauna	ISO 11063:2020(en) Soil quality — Direct extraction of soil DNA	Analysis is rapid and cheap to perform after DNA is extracted	NOT RECOMMENDED due to the limited information on specific abundance of pests and pathogens

Supporting soil biodiversity: what should I do?

Regenerative management

'A toolkit of principles and practices to restore and preserve biodiversity and soil health by creating a functioning ecosystem that reduces external inputs while producing nourishing farm products'

Schreefel et al 2020

Regenerative agriculture

Sustainable agriculture

Emphasis on efficiency for meeting present and current needs

Climate Smart Agriculture

Emphasis on climate change mitigation and adaptation

Agroecology

Emphasis on selfregulating systems and soil ecology

Principles of regenerative management

Everyone needs food (carbon or organic matter) and a home (soil structure)

Holly M Deniston-Sheets (MSc, Cal Poly) James J. Smith (Cal Poly) Amanda K Hodson (UCD) Katherine Watts (Cal Poly) Jean C. Dodson Peterson (Cal Poly) Federico Casassa (Cal Poly) Cristina Lazcano (UCD)

CALIFORNIA STATE U N I V E R S I T Y AGRICULTURAL R E S E A R C H I N S T I T U T E

Objective: assess the effects of fertilizer inputs (i.e. organic vs inorganic vs no fertilizer) on soil health using nematode food webs as proxies

Paragon vineyard, Edna Valley. San Luis Obispo County.

Organic fertilizer applied under the vine increased the abundance of fungivore and bacterivore nematodes, increasing foodweb complexity

Lazcano et al. 2021

Cover crops and soil biodiversity

Diversity of root system architecture in prairie plants from McNear Jr., D. H. (2013)

Cover crops increase microbial abundance, activity and diversity as shown by various indicators

Global Mean Effect Sizes of Soil Microbiome Parameters

Kin et al 2020

Different cover crops change soil microbial diversity differently

Survey of 30 sites in Napa, CA

Burns et al., 2016

Cover crop management

Termination

One of the most critical management decisions, since it can have profound impacts in soil physical, chemical and biological properties

What are the options?

Photo: Tablas Creek vineyard, CA (USA)

Tillage

No-till

+ More soil C

- More diversity?

+ protects soil structure

Grazing

+ compensatory growth and release of root exudates- more C
+ Source of N

+ Fast incorporation of organic matter into the soil- increase soil C?

-increased aerationmore decomposition-Loss of C

- Destroys soil structure
- disruption of fungal
 cells and macrofauna

Ecological effects of sheep grazing

Experimental design

- Vitis vinifera L. cv. Syrah
- 2018-2020
- Soil: 4.5% SOM, 30% clay
- Cover crop mix
- Compost 11 t/ha
- Factorial design
 - Tillage (+/-)
 - grazing (+/-)
- 4 replicates, 16 plots

No-till increased bacterial α -diversity in non grazed plots and tractor rows

• No significant effects of tillage and grazing on fungal α -diversity

Bansal et al. In progress

Grazing increased microbial activity

Regenerative management: challenges

Management effects differ by environment

Environment A

Environment B

Soil type and climate matter!

Stacking practices: synergistic effects?

Reduced/ no-tillage

Cover crop/ vegetative cover

Mulching

Crop Rotation

Organic amendments

Animal integration

Regenerative management

- Soil biodiversity supports vineyard multifunctionality
- Regenerative practices (organic amendments, no till and grazing) support biodiversity
- Unclear if stacking practices has synergistic effects
- Management effects are site-specific
- Need to monitor changes using the right indicators

Thank you!

https://lazcano.faculty.ucdavis.edu

SOIL BIODIVERSITY AND HEALTH LAB Healthy soils for healthy food and a healthy planet

