Climate change mitigation and adaptation through soil conservation in Central Coast Vineyards – Lessons learned from controlled field trials

Charlotte Decock, Cristina Lazcano, Connie Wong, Mia Falcone, Noelymar Gonzalez-Maldonado, Erika Yao, Bwalya Malama, Stewart Wilson, Aaron Lee, Hayley Barnes, Megan Widle, Andrew Johnson, Devin Best, Spencer Gordon, Max McCool, David Feldtkeller, Anna Rodriguez Paiatsyka, Yamina Pressler, Claire Balint, Craig Stubler, Nick Babin

Climate Smart Agriculture at Cal Poly

- In 2016, the California legislature passed Senate Bill 859, which established the Healthy Soils Program (HSP).
- The program is funded from the State's cap and trade proceeds, also known as California Climate Investments (CCI).
- The program includes two components, the HSP Incentives Program and the HSP Demonstration Projects.
- This program funded Cal Poly to conduct **seven controlled field trials** across various agroecosystems assessing the potential of HSP practices to improve soil health and mitigate climate change in California's Central Coast region.

Rangeland compost rate trial

Santa Cruz

X

Monterey Carmel-By-The-Sea

Carmel Valley

Gilrov

Pfeiffer Big Sur State Park

Practices/treatments Topsoil texture Crop type 0, 2, 4 and 6 tons compost acre Wine grape Sandy loam Compost, vermicompost and Wine grape Sandy loam vermicompost extract vs. control 0, 10, 20 and 30 tons compost acre⁻¹; 2 Rangeland gravely sandy loam, marine terraces loam Reduced till vs. no till; Compost vs. no Dryland forage Clay compost No till vs. conventional till; grazing vs. Clay loam Wine grape mowing Legume and non-legume cover crop vs. Silty clay loam Lemon control Cover crop and cover crop inoculated with Clay Lemon mycorrhizae vs. control

Compost application

- Rate
- Timing
- Placement
- Source

Practices/treatments	Crop type	Topsoil texture
0, 2, 4 and 6 tons compost acre ^{-1}	Wine grape	Sandy loam
Compost, vermicompost and vermicompost extract vs. control	Wine grape	Sandy loam
0, 10, 20 and 30 tons compost acre ⁻¹ ; 2 marine terraces	Rangeland	gravely sandy loam, loam
Reduced till vs. no till; Compost vs. no compost	Dryland forage	Clay
No till vs. conventional till; grazing vs. mowing	Wine grape	Clay loam
Legume and non-legume cover crop vs. control	Lemon	Silty clay loam
Cover crop and cover crop inoculated with mycorrhizae vs. control	Lemon	Clay

	Practices/treatments	Crop type	Topsoil texture
Compost application Rate Timing Placement 	0, 2, 4 and 6 tons compost acre ⁻¹	Wine grape	Sandy loam
	Compost, vermicompost and vermicompost extract vs. control	Wine grape	Sandy loam
• Source	0, 10, 20 and 30 tons compost acre ⁻¹ ; 2 marine terraces	Rangeland	gravely sandy loam, loam
	Reduced till vs. no till; Compost vs. no compost	Dryland forage	Clay
TillageNo till	No till vs. conventional till; grazing vs. mowing	Wine grape	Clay loam
Reduced till	Legume and non-legume cover crop vs. control	Lemon	Silty clay loam
	Cover crop and cover crop inoculated with mycorrhizae vs. control	Lemon	Clay

	Practices/treatments	Crop type	Topsoil texture
Compost application Rate	0, 2, 4 and 6 tons compost $acre^{-1}$	Wine grape	Sandy loam
 Timing Placement 	Compost, vermicompost and vermicompost extract vs. control	Wine grape	Sandy loam
• Source	0, 10, 20 and 30 tons compost acre ⁻¹ ; 2 marine terraces	Rangeland	gravely sandy loam, loam
	Reduced till vs. no till; Compost vs. no compost	Dryland forage	Clay
 Tillage No till 	No till vs. conventional till; grazing vs. mowing	Wine grape	Clay loam
Reduced till	Legume and non-legume cover crop vs. control	Lemon	Silty clay loam
	Cover crop and cover crop inoculated with mycorrhizae vs. control	Lemon	Clay
Cover crops Crop type Planting strategy 			

• Termination strategy

	Practices/treatments	Crop type	Topsoil texture
Compost application	0, 2, 4 and 6 tons compost acre ⁻¹	Wine grape	Sandy loam
 Rate Placement Timing 	Compost, vermicompost and vermicompost extract vs. control	Wine grape	Sandy loam
• Source	0, 10, 20 and 30 tons compost acre ⁻¹ ; 2 marine terraces	Rangeland	gravely sandy loam, loam
	Reduced till vs. no till; Compost vs. no compost	Dryland forage	Clay
 Tillage No till 	No till vs. conventional till; grazing vs. mowing	Wine grape	Clay loam
Reduced till	Legume and non-legume cover crop vs. control	Lemon	Silty clay loam
	Cover crop and cover crop inoculated with mycorrhizae vs. control	Lemon	Clay
Cover crops Crop type Planting strategy 			
Termination strategy	Biolo	ogicals	

Compost application – the right rate

Vineyard 0, 2, 4 and 6 tons compost acre⁻¹

More compost = more benefits

Vineyard 0, 2, 4 and 6 tons compost acre⁻¹

No negative externalities

岸 0 Mg/ha 📫 4.5 Mg/ha 岸 9.0 Mg/ha 븓 13.5 Mg/ha

Vineyard 0, 2, 4 and 6 tons compost acre⁻¹

Compost application – other considerations

IMPACTS OF COMPOST ON SOIL HEALTH WERE ONLY OBSERVED ON THE OLDER TERRACE

⇔ PEDOGENESIS MATTERS FOR SOIL HEALTH PRACTICES

Compost application – the right place and time

- Surface application
 broadcast over the
 entire vineyard in
 Fall increased POXC
 to 2 feet depth
- Implications for stacking soil health practices

Compost application – the right source

- Fall application
- Banded under the vine
- Cover crop

Nutrient Percentage	Vermicompost	Dairy Compost	
C:N ratio	12	9.1	
Organic matter (%)	67.1	30.5	
Carbon (%)	29.0	14.0	
Organic Nitrogen (%)	1.9	1.6	
pH Value	6.95	9.18	
Phosphorus (mg/kg)	3300	7100	
Potassium (mg/kg)	10000	29000	
Sodium (Na) (%)	0.31	0.66	

Effects on SOM and pH 2 years after practice implementation

Treatment	SOM (%)		рН (-)		
	MR	UV	MR (B)	UV (A)	
Control	1.8±0.1 (A)	1.4± 0.0 (B)	7.3 ± 0.1	7.8±0.2	ab
Vermicompost	1.6± 0.1 (AB)	1.8± 0.1 (A)	7.3 ± 0.1	7.6 ± 0.1	b
Standard Compost	1.6± 0.1 (AB)	1.5± 0.1 (AB)	7.4 ± 0.0	8.0 ± 0.0	а
Vermicompost	1.6± 0.1 (AB)	1.3±0.0 (B)	7.4 ± 0.1	7.8 ± 0.1	ab
extract					

Effects on nitrate N, P and K 2 years after compost application

Compost application – other considerations

EFFECTS OF TREATMENTS ON SOIL HEALTH FADED OUT IN YEAR 3 \Leftrightarrow SUSTAINED PRACTICE ADOPTION OVER TIME IS KEY

Tillage - Many shades of grey

Conservation tillage (> 30% residue cover after planting)			Minimum tillage	
No-tillage	Ridge tillage	Strip tillage	Mulch tillage	(> 40% reduction in passes)
birect seeding; Soil is left undisturbed	Low soil disturbance; Cultivation uses sweeps, hilling disks, furrowing wings	Only seed row is tilled	Uses conventional broadcast tillage implements such as disks, chisel plows, rod weeders, or cultivators, but with limited passes across a field	The use of equipment that combines tillage tools onto a single frame E.g.; Optimizer (New World Tillage, Modesto, CA), Eliminator (Wilcox Agriproducts, Walnut Grove, CA)

Tillage: No till in a biodynamic vineyard

- No-till increased stratification in the distribution of POXC
- No-till slightly reduced the daily fluxes of CO₂ from the soil during the rainy season, showing that these
 plots were less prone to lose C than tilled plots.
- No-till did not increase total soil C stocks.

Lazcano *et al.*, 2022

Tillage: Reduced tillage in dryland forage production

- Periodic increased infiltration and increased moisture in reduced till compared to conventional tillage
- Year 3 effects on SOC, MinC, and soil aggregation in progress.

Cover crops

Cover crops – Species effects

Burns et al. 2015, 2016

Cover crops – Grazing as a termination strategy

- Grazing resulted in sporadic and localized peaks in daily N₂O, CH₄ and CO₂ emissions.
- Nevertheless emissions were not significantly larger than non-grazed soils when extrapolated to the cumulative emissions of the whole season.
- Sheep grazing and tillage did not have a significant effect on the yield and quality of the grapes during the two years of the study.

STACKING PRACTICES

Fig. 8. Impacts of SCS practices (OA, organic amendments; BC, biochar; PR, pruning residues; NT, no-tillage; and CC, cover cropping) on the SOC sequestration rate to 30-cm depth. PR+NT and OA+PR+NT were not included in the analysis, since only one comparison was observed for these categories. Points represent weighted average values, whereas error bars correspond to the 95% confidence intervals.

Payen *et al.*, 2021

Biologicals

T3: BS-NLCC Non-Legume Cover Crop Titicale 888 3 x 0.46 = 1.38 acres T4: BS-NLCC-M Non-legume cover cop Triticale 888 with inoculant (Mykos Gold, RTI-AG) 3 x 0.46 = 1.38 acres

C2: BS-Control Bare fallow 3 x 0.46 = 1.38 acres

Vermicompost extract affected stratification of select microbial groups and total N

 Relative abundance of select microbial groups was similar between the topsoil and the subsoil in the vermicompost extract treatment, while there were distinct differences between the topsoil and the subsoil in the control, dairy compost, and vermicompost treatment.

- Likewise, there was no difference in SON concentration between the topsoil and the subsoil in the vermicompost extract treatment, while topsoil SON was significantly greater than subsoil SON in the three other treatments.
- Possible, vermicompost extract distributes the active root zone over a deeper depth.

No significant effects of AMF inoculation on GHG emissions and soil health metrics measured

Key Lessons Learned

- No effects of conservation practices on grape yield in the short term
- No tradeoffs in terms of increased emissions of the potent GHG N₂O with the adoption of conservation practices.
- Benefits of conservation practices take time to develop

Compost

- Benefits increased with increasing application rates between 2-6 ton/acre/year
- 1 ton/acre/year may not be enough to sustain benefits
- Benefits of compost are likely soil-dependent
- Subsurface benefits were achieved with surface placement without incorporation
- Benefits on soil chemical properties mimicked compost composition

Tillage

- There are many options to modify tillage intensity
- In the short term, there
 was increased
 stratification of soil
 properties and occasional
 decreased C loss in notill, without impacts on
 yield or grape quality
 compared to
 conventional till
- More research needed on long-term impacts of reduced till, no till and keyline plowing in California vineyards

Cover crops

- When choosing to plant a cover crop, one should consider the species, planting strategy and termination strategy
- Grazing did not show strong short-term benefits, but also no negative impacts
- More info is needed on the impact of stacking cover crops with other conservation practices

Biologicals

- Vermicompost extract changed the stratification of SON and select microbial groups in the soil
- Inoculation of a cereal cover crop with AMF did not change the abundance of AMF or affect soil health in a lemon orchard after 3 years of treatment