Improving nursery practices to prevent fungal contamination and biocontrol options

Akif Eskalen, Marcelo Bustamante, Karina Elfar, Karen Alarcon, Carlos Carachure

Plant Pathology Department, University of California, Davis

aeskalen@ucdavis.edu

Sustainable Ag Expo November 14, 2023

Outline

- 1. Introduction
- 2. Grapevine trunk diseases
- 3. Common nursery contamination
- 4. Management strategies
- 5. Conclusion

Grapevine Trunk Diseases

Vascular diseases

- Young Vine Decline
- Esca
- Eutypa Dieback
- Bot Canker
- Phomopsis Dieback

Grapevine Trunk Diseases

- Young Vine Decline
- Esca

Vascular diseases

- Eutypa Dieback
- Bot Canker
- Phomopsis Dieback

Canker diseases

Recent findings on other canker diseases

Aspergillus spp.

Grapevine Trunk Diseases

- Young Vine Decline
- Esca
- Eutypa Dieback
- Bot Canker
- Phomopsis Dieback
- Black Foot

Vascular and Rot diseases

Canker diseases

Rot diseases

Macrophomina Charcoal Rot (Macrophomina phaseolina)

How do they infect their hosts?

• Pruning wounds

Latent and Endophyte

Infection of GTD on different parts of the vine

Spurs

Field pruning wound protection trials

1) Treatment

Isolations on APDA Recovery of *N. parvum* (%)

2) Inoculation 3) Evaluation of infection*N. parvum*(2,000 conidia)

Field pruning wound protection trials results

Mean percent infection of *N. parvum* (MPI, %)

How do they infect their hosts?

• Pruning wounds

Latent and Endophyte

Young vine decline and latent infection

Some of the young vine decline has been associated with contaminated nursery plants

Contamination during storage of cuttings

The large number of cuts and wounds made throughout the propagation of planting material in nurseries correlate with higher infections with fungal trunk pathogens and many other opportunistic saprophytic fungi that will further express in vineyards

Graft failure

Graft union on a mature vine

Some of the latent infection could have originated from mother plants

Survey in nurseries and young vineyards

1. Isolation

2. Identification

3. Pathogenicity tests

Number of	Fusarium	Fusarium	
vines (n)	positives (n)	incidence (%)	
62	54	87.1	
225	72	32.0	
60	11	18.3	
523	47	8.9	
485	217	44.7	
100	89	89.0	
75	6	8.0	
50	32	64.0	
347	137	39.5	
1,233	391	31.7	
	Number of vines (n) 62 225 60 523 485 100 75 50 347 1,233	Number of vines (n) Fusarium positives (n) 62 54 62 54 225 72 60 11 523 47 485 217 100 89 75 6 50 32 347 137 1,233 391	

Results

1. Isolation 2. Molecular identification 3. Pathogenicity tests tef1 **NURSERY POPULATION VINEYARD POPULATION** F. solani F. tricinctum F. oxysporum 4.2% 0.8% 5.3% F. incarnatum-equiseti 5.9% F. sambucicola F. solani 8.5% 27.6% F. fujikuroi F. fujikuroi F. oxysporum 14.4% 67.1% 66.1%

Results

Results

100% recovery of isolates

F. clavum (FIESC), *F. brachygibbosum* (FSAMSC) and *F. avenaceum* (FTSC) not recovered.

F. keratoplasticum (FSSC), and 2 FOSC isolates (*F. glycines* and *F.* sp.) not recovered.

Conclusions

- 1. Multiple species of *Fusarium* are pathogenic to grapevine vascular tissue.
- 2. Most frequent groups: F. fujikuroi, F. solani and F. oxysporum species complexes.
- 3. Differential virulence among species and isolates of the same species.
- 4. High incidence in nursery and vineyard samples + pathogenicity results suggest that *Fusarium* plays an important role in developing Young Vine Decline.

Plant Disease 2023 (published)

1 Identification and Pathogenicity of *Fusarium* Species Associated with Young Vine Decline

2 in California

- 3 Marcelo I. Bustamante^{*1}, Colin Todd^{*2}, Karina Elfar¹, Muhammad Imran Hamid³, Jadran F.
- 4 Garcia⁴, Dario Cantu⁴, Philippe E. Rolshausen³, and Akif Eskalen¹
- 5
- 6 ¹ Department of Plant Pathology, University of California, Davis, CA 95616
- 7 ² Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521
- 8 ³ Department of Botany and Plant Sciences, University of California, Riverside, CA 92521
- 9 ⁴ Department of Viticulture and Enology, University of California, Davis, 95616
- 10 *Authors contributed equally
- 11

12 Abstract

Grapevine trunk diseases (GTDs) are caused by a broad range of fungal taxa that have serious 13 14 impacts on the worldwide viticulture industry due to significant reductions in yield and lifespan of 15 vineyards. The subgroup of GTDs occurring in vines at early stages of their life cycle has been collectively known as Young Vine Decline (YVD), which has been described to be caused by 16 black foot, Petri disease and Botryosphaeria dieback. Field surveys carried out from 2018 to 2022 17 18 in California nurseries and young vineyards revealed a high incidence of *Fusarium* species. 19 However, this fungal genus is not currently considered as a causal agent of GTDs. Since 20 *Fusarium* spp. are well known to cause trunk diseases in other perennial crops, the present study aimed to identify and determine the pathogenicity of the Fusarium species associated with young 21

Evaluate the efficacy of BCAs in nursery settings.

Multiple modes of actions of biocontrol agents

Waghunde et al. 2016

Evaluate the effect of locally systemic pesticides and biocontrol agents at the different steps of the propagation process to control/prevent grapevine trunk diseases.

• Treat dormant propagation material in the nursery using soaking/vacuum infiltration

Effect on callusing after grafting

Graft union

Basal end of rootstocks

Rating of callusing

Good callusing

- Better physiological performance (root/shoot formation).
- Less exposure to infections.

Effect of soaking treatments prior to grafting on callusing

VitiSeal[®] and Serenade[®] significantly improve the callus formation at **graft union** level. VitiSeal[®], Serenade[®], Bio-Tam[®], and *Pseudomonas chlororaphis* (experimental) significantly improve the callus formation at the **rootstock** end.

Isolation frequency from graft union

Isolation frequency from graft union

Isolation frequency from graft union

Isolation frequency from the root crown

Isolation frequency from the root crown

Trichoderma spp. (Beneficial)

- Use disease-free, clean plant materials when establishing new vineyards
- Protect pruning wounds
- Apply good cultural practices to minimize stress on vines
- Delay dormant pruning to reduce the susceptibility
- If applicable, consider doing double pruning to reduce fungal spore infection during winter moths

Eskalen lab website

Flag 18-YKC-2022- Powdery Mildew Trial

🐵 🍈 (+)

Trial I

G. Results

Table 1. Disease incidence and severity of synthetic fungicides and combinations of soft chemistry and synthetic products. Product names are followed by rate (per acre). Treatment means followed by the same letter are not significantly different according to Fisher's LSD at α =0.05;

Treatment		Application date	Powdery mildew on the cluster ^y		
Pictures	- Flag	Rate/A ^z	(Julian day)	Incidence, %	Severity, %
		Abound 15.5 fl oz + Syl-Coat 4 fl oz	105		
		Prolivo 5 fl oz + Syl-Coat 4 fl oz	119		
		Kenja 22 fl oz + Rally 4 oz + Syl-Coat 4 fl oz	132		
18	YKC	Quintec 4oz + Syl-Coat 4 fl oz	147	0.0 a	0.00 a
		Torino 3.4 oz + Syl-Coat 4 fl oz	161		
		Merivon 4oz + Syl-Coat 4 fl oz	178		
		Vivando 15.4 oz + Syl-Coat 4 fl oz	193		
		PureSpray Green 1 gal	103, 110, 117		
		Luna Experience 8.6 fl oz	124, 182		
37	BC	Pristine 23 oz	138	0.0 a	0.00 a
		Elevate 16oz	152		
		Parade 3.1 fl oz	166		
41	Pu	Parade 3.1 fl oz + Dyne-Amic 0.25% y/y	108, 122, 136, 150,	0.0 a	0.00 a
			165, 179, 194		
		Aprovia Top 13.3 fl oz +Syl-Coat 0.125%	122, 179		
		Quintec 6.6 fl oz + Syl-Coat 0.125% v/v	136, 194		
62	Y+O	Miravis Prime 13.4 fl oz +Syl-Coat 0.125%	165	0.0 a	0.00 a
		v/v			
		Inspire Super 20.0 fl oz +Syl-Coat 0.125% v/v	150		
		Aprovia Top 13.3 fl oz + A9180B 0.5 oz	122, 179		
		+Syl-Coat 0.125% v/v			
		Quintec 6.6 fl oz + A9180B 0.5 oz + Syl-	136, 194		
63	Y+W	Coat 0.125% v/v		0.0 a	0.00 a

Look out for Downy mildew (Plasmopara viticola)

e: Mark Battany nght © 2017 Regents of the University of California

37

Acknowledgements

Eskalen Lab Team – Department of Plant Pathology UC Davis

Cooperators and UCCE Farm Advisors

Mark Battany – UCCE San Luis Obispo, Santa Barbara Larry Bettiga – UCCE Monterey Monica Cooper – UCCE Napa Carmen Gispert – UCCE Riverside Glenn McGourty – UCCE Mendocino Rhonda Smith – UCCE Sonoma Gabriel Torres – UCCE Tulare Jose Ramon Úrbez-Torres – Agriculture and Agri-Food Canada Lynn Wunderlich – UCCE Central Sierra George Zhuang – UCCE Fresno

Funding:

https://ucanr.edu/sites/eskalenlab/

aeskalen@ucdavis.edu